Hybrid electrodialysis reverse osmosis system design and its optimization for treatment of highly saline brines
نویسندگان
چکیده
The demand is rising for desalination technologies to treat highly saline brines arising from hydraulic fracturing processes and inland desalination. Interest is growing in the use of electrical desalination technologies for this application. The hybridization of electrodialysis (ED) with reverse osmosis (RO) allows high salinities (beyond the range of RO alone) to be reached while avoiding the operation of ED with a low conductivity diluate stream. Such hybrid systems have been experimentally investigated for concentrates from brackish and seawater desalination. However, progress is required in the modelling and optimization of hybrid systems at higher concentrations. A novel hybrid arrangement of counterflow ED systems with reverse osmosis is presented to concentrate a saline feed at 120 ppt. The system is considered from the perspective of efficiency, membrane productivity and the levelised cost of water, with emphasis on the optimisation of current density. In contrast to brackish ED systems, membrane resistances are found to dominate diluate and concentrate resistances at high salinity. The current density found to minimise LCW (levelised cost of water) is significantly greater than the current density found to maximise efficiency, indicating the high current capital cost of ED per unit membrane area and poor membrane transport properties relative to RO. Finally, performance at high recoveries is found to be limited by high stream-to-stream concentration differences, increasing water transport via osmosis, decreasing efficiency and increasing the LCW.
منابع مشابه
Various Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant
This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...
متن کاملDesalination/concentration of reverse osmosis and electrodialysis brines with membrane distillation
Brines produced by desalination processes such as reverse osmosis (RO), electrodialysis reversal (EDR) and ion-exchange (IX) holds pollution potential for the water environment if not properly handled. These brines contain a high water content (95–98%) and chemicals that could possibly be recovered for reuse. Therefore, direct contact membrane distillation (DCMD) which has the potential for wat...
متن کاملReverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives
Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologie...
متن کاملBentazon removal from aqueous solution by reverse osmosis; optimization of effective parameters using response surface methodology
Although bentazon is widely used as an agricultural herbicide, it is harmful to humans and poses many environmental threats. This study focused on the treatment of wastewater contaminated with bentazon pesticides using membrane technology. In this regard, low-pressure reverse osmosis (RO) was employed as it has already been used in the removal of other micro-pollutants. The effects of process v...
متن کاملModification of Polymeric Membrane for Energy Generation through Salinity Gradient: A Short Review
Salinity gradient energy (SGE) refers to the energy created from the difference in salt concentration between two streams. There are three types of SGE namely, pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix). All these technologies require membrane for the system to be operational. In this short review, the membranes modifications for each principl...
متن کامل